Senin, 26 November 2018

STOIKIOMETRI


Stoikiometri

Pengertian Stoikimetri
Pengertian Stoikiometri dan Jenis Stoikiometri – Stoikiometri ialah cabang kimia yang berhubungan dengan suatu hubungan kuantitatif yang terdapat antara reaktan dan juga produk dalam reaksi kimia. Reaktan ialah suatu zat yang berpartisipasi didalam reaksi kimia, dan juga produk ialah suatu zat yang diperoleh sebagai hasil dari reaksi kimia.
Stoikiometri tersebut bergantung pada kenyataan ialah bahwa unsur-unsur berperilaku dengan cara yang bisa atau dapat  diprediksi, dan juga materi yang tidak dapat diciptakan atau juga dihancurkan.
Oleh Sebab itu, pada saat unsur digabungkan kemudian menghasilkan reaksi kimia, sesuatu yang dikenal dan juga spesifik yang akan terjadi serta hasil reaksi bisa untuk diprediksi dengan berdasarkan unsur-unsur dan juga jumlah yang terlibat. Stoikiometri ialah matematika di balik ilmu kimia.
Perhitungan stoikiometri tersebut bisa menemukan bagaimana unsur-unsur dan juga komponen yang diencerkan dalam suatu larutan yang konsentrasinya diketahui, bereaksi didalam kondisi eksperimental. Kata “Stoikiometri” tersebut berasal dari kata “stoicheion” Yunani, berarti “unsur” dan juga “metron” berarti “ukuran”.
Hukum yang mengatur Stoikiometri.
Stoikiometri tersebut bersandar pada hukum ialah seperti hukum perbandingan tetap, hukum perbandingan ganda dan juga hukum kekekalan massa.
  • Hukum kekekalan massa
    Dengan menggunakan hukum-hukum fisika ialah seperti hukum kekekalan massa, yang menggemukakn bahwa massa reaktan itu sama dengan massa produk, Stoikiometri digunakan untuk dapat mengumpulkan informasi mengenai jumlah berbagai unsur yang digunakan didalam suatu reaksi kimia ,
  • Hukum perbandingan tetap
    Hukum Ini menyatakan ialah bahwa senyawa kimia tersebut (zat yang terdiri atas 2(dua) atau juga lebih usnur) yang selalu berisi proporsi yang sama dari suatu unsur (senyawa dengan satu jenis atom) dengan massa.
  • Hukum perbandingan berganda
    Hukum Ini ialah salah satu hukum dasar stoikiometri, disamping dari hukum perbandingan tetap. Kadang-kadang juga disebut dengan hukum Dalton. Dikatakan ialah bahwa, jika 2(dua) unsur tersebut membentuk lebih dari 1 senyawa antara mereka, maka rasio massa dari suatu unsur kedua yang bergabung dengan massa tetap atas unsur pertama keduanya tersebut akan mempunyai rasio sejumlah kecil dari keseluruhan.
Penjelasan Stoikiometri
Dengan berdasarkan hukum-hukum di atas tersebut, reaksi kimia tersebut dapat menggabungkan dalam rasio bahan kimia yang pasti. Jumlah pada tiap-tiap unsur tersebut harus sama di seluruh reaksi. Dalam reaksi kimia yang seimbang, hubungan antara jumlah reaktan dan juga produk biasanya akan membentuk rasio bilangan bulat. Misalnya ialah , dalam suatu reaksi yang membentuk amonia (NH3), tepatnya 1(satu) molekul nitrogen (N2) bereaksi ialah dengan 3(tiga) molekul hidrogen (H2) untuk dapat menghasilkan 2 molekul NH3. Hal tersebut dapat digambarkan sebagai berikut
N2 + 3H2 ——-> 2NH3
Maka, Stoikiometri tersebut dapat digunakan untuk dapat menghitung jumlah ialah seperti jumlah produk yang dapat diproduksi apabila diberikan reaktan dan juga persentase reaktan yang dibuat menjadi suatu produk diketahui.
Jenis Stoikiometri
  • Stoikiometri Reaksi
    Stoikiometri tersebut sering digunakan untuk dapat menyeimbangkan persamaan kimia yang dapat ditemukan pada stoikiometri reaksi. Hal tesebut menggambarkan bahwa hubungan kuantitatif antara zat disebabkan karena mereka berpartisipasi dalam reaksi kimia.
  • Stoikiometri Komposisi
    Stoikiometri komposisi ini menjelaskan ialah kuantitatif (massa) hubungan antara suatu unsur-unsur dalam senyawa. Misalnya ialah, stoikiometri komposisi tersebut menggambarkan (massa) nitrogen dengan hidrogen yang bergabung dan menjadi amonia kompleks. yakni 1 mol nitrogen dan juga 3 mol hidrogen dalam tiap-tiap 2 mol amonia. Mol ialah satuan yang digunakan didalam kimia untuk jumlah zat.
  • Stoikiometri Gas
    Jenis stoikiometri ialah berkaitan dengan suatu reaksi yang melibatkan gas, yang mana gas berada pada suatu suhu, tekanan dan juga volume yang dikenal dan juga dapat dianggap gas ideal. Untuk gas, perbandingan volume idealnya tersebut sama dengan hukum gas ideal, Namun rasio massa reaksi tunggal tersebut harus dihitung dari massa molekul reaktan serta juga produk,yang mana massa molekul ialah massa 1(satu) molekul zat.
Gas ideal ialah suatu gas teoretis yang terdiri dari 1(satu) set partikel yang bergerak acak, tanpa-berinteraksi yang mematuhi suatu hukum gas ideal. Hukum gas ideal ialah suatu persamaan keadaan gas ideal. Persamaan hukum gas ideal ialah sebagai berikut :
“PV = nRT, yang mana P ialah tekanan, V ialah volume dan juga T ialah temperatur absolut, n ialah mol gas dan juga R ialah konstanta gas universal”.
Pengertian rasio stoikiometri
Sejumlah stoikiometri atau juga rasio reagen (zat yang ditambahkan ke suatu sistem dalam rangka untuk menciptakan suatu reaksi kimia) ialah jumlah atau juga rasio yang mana, dengan asumsi ialah bahwa hasil suatu reaksi selesai dengan dasar , antara lain ialah sebagai berikut:
  1. Semua reagen yang dikonsumsi
  2. Tidak terdapat defisit reagen
  3. Tidak terdapat sisa-sisa residu
  4. Reaksi hanya akan terjadi atau tercipta pada rasio stoikiometri
Dalam ilmu kimiastoikiometri (kadang disebut stoikiometri reaksi untuk membedakannya dari stoikiometri komposisi) adalah ilmu yang mempelajari dan menghitung hubungan kuantitatif dari reaktan dan produk dalam reaksi kimia (persamaan kimia). Kata ini berasal dari bahasa Yunani stoikheion (elemen) dan metriā (ukuran).
Stoikiometri didasarkan pada hukum-hukum dasar kimia, yaitu hukum kekekalan massahukum perbandingan tetap, dan hukum perbandingan berganda.
Stoikiometri gas adalah suatu bentuk khusus, di mana reaktan dan produknya seluruhnya berupa gas. Dalam kasus ini, koefisien zat (yang menyatakan perbandingan mol dalam stoikiometri reaksi) juga sekaligus menyatakan perbandingan volume antara zat-zat yang terlibat.
Tahap Awal Stoikiometri
Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar.
Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat terbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.
Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.
Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis.
Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.
Massa Atom Relatif
Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.
Kemudian kimiawan Swedia Jons Jacob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metode ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi.
Soal Latihan 1.1 Perubahan massa atom disebabkan perubahan standar. Hitung massa atom hidrogen dan karbon menurut standar Berzelius (O = 100). Jawablah dengan menggunakan satu tempat desimal.
Jawab.
Massa atom hidrogen = 1 x (100/16) = 6,25 (6,3), massa atom karbon = 12 x (100/16)=75,0
Massa atom hampir semua unsur sangat dekat dengan bilangan bulat, yakni kelipatan bulat massa atom hidrogen. Hal ini merupakan kosekuensi alami fakta bahwa massa atom hidrogen sama dengan massa proton, yang selanjutnya hampir sama dengan massa neutron, dan massa elektron sangat kecil hingga dapat diabaikan. Namun, sebagian besar unsur yang ada secara alami adalah campuran beberapa isotop, dan massa atom bergantung pada distribusi isotop. Misalnya, massa atom hidrogen dan oksigen adalah 1,00704 dan 15,9994. Massa atom oksigen sangat dekat dengan nilai 16 agak sedikit lebih kecil.
Contoh Soal 1.2 Perhitungan massa atom. Hitung massa atom magnesium dengan menggunakan distribsui isotop berikut: 24Mg: 78,70%; 25Mg: 10,13%, 26Mg: 11,17%.
Jawab:
0,7870 x 24 + 0,1013 x 25 +0,1117 x 26 = 18,89+2,533+2,904 = 24,327(amu; lihat bab 1.3(e))
Massa atom Mg = 18,89 + 2,533 + 2,904 =24.327 (amu).
Perbedaan kecil dari massa atom yang ditemukan di tabel periodik (24.305) hasil dari perbedaan cara dalam membulatkan angkanya.
hitunglah massa dari gas metana 1,23 liter diukur pada suhu 25c dan tekanan 1 atm
Kuantitas Materi dan Mol
Metode kuantitatif yang paling cocok untuk mengungkapkan jumlah materi adalah jumlah partikel seperti atom, molekul yang menyusun materi yang sedang dibahas. Namun, untuk menghitung partikel atom atau molekul yang sangat kecil dan tidak dapat dilihat sangat sukar. Alih-alih menghitung jumlah partikel secara langsung jumlah partikel, kita dapat menggunakan massa sejumlah tertentu partikel. Kemudian, bagaimana sejumlah tertentu bilangan dipilih? Untuk
menyingkat cerita, jumlah partikel dalam 22,4 L gas pada STP (0, 1atm) dipilih sebagai jumlah standar. Bilangan ini disebut dengan bilangan Avogadro. Nama bilangan Loschmidt juga diusulkan untuk menghormati kimiawan Austria Joseph Loschmidt (1821-1895) yang pertama kali dengan percobaan (1865).
Sejak 1962, menurut SI (Systeme Internationale) diputuskan bahwam dalam dunia kimia, mol digunakan sebagai satuan jumlah materi. Bilangan Avogadro didefinisikan jumlah atom karbon dalam 12 g 126C dan dinamakan ulang konstanta Avogadro.
Ada beberapa definisi “mol”:
(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C. (ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.
(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.
Satuan massa atom (sma)
Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.

Tidak ada komentar:

Posting Komentar